10° CONGRESSO NAZIONALE

CARDIO RADIOLOGIA: UPDATE 2023 • Le Evidenze Scientifiche Cardio TC

Carlo Tedeschi Cardiologia PSI Napoli Est – Radiologia Ospedale del Mare – ASL NA 1 Centro

European Society European Heart Journal - Cardiovascular Imaging (2022) 00, 1–16 of Cardiology https://doi.org/10.1093/ehjci/jeab293

EACVI DOCUMENT

Clinical applications of cardiac computed tomography: a consensus paper of the European Association of Cardiovascular Imaging—part I European Society of Cardiology Unit of Cardiology European Heart Journal - Cardiovascular Imaging (2022) 00, 1–26

EACVI DOCUMENT

Clinical applications of cardiac computed tomography: a consensus paper of the European Association of Cardiovascular Imaging—part II

Gianluca Pontone (1.4.¹, Alexia Rossi^{2,3,†}, Marco Guglielmo (1.4.¹, Marc R. Dweck (1.4.¹, Oliver Gaemperli⁵, Koen Nieman (1.6.⁶, Francesca Pugliese (1.6.^{7,8}, Pal Maurovich-Horvat (1.6.⁹, Alessia Gimelli (1.6.¹⁰, Bernard Cosyns (1.1.¹¹, and Stephan Achenbach (1.6.¹²)

	Use of ca is appr	ardiac CT opriate		Use of cardiac CT could be considered		Use of c is app	ardiac CT ropriate			Use of cardiac C1 could be considere	Г ed
Coronary calcium score	Suspected or chronic CAD	Acute chest pain	Previous coronary revascularization	Previous coronary revascularization	Structural heart disease#1	Structural heart disease#2	Cardiomyopathies	Coronary anomalies and congenital heart diseases	Functional imaging#1	Functional imaging#2	Cardiomyopathies
					Ø	٨					9
 Asymptomatic individuals at intermediate risk of ASCVD Subjects with unknown CAD undergoing non- gated, non- contrast chest CT 	 Patients with unknown CAD and atypical or typical argina or angina equivalent symptoms Patients who have undergone inconclusive stress testing 	 Patients at low-to- intermediate probability of CAD when ECG and/or cardiac troponin are normal or inconclusive Life-threatening conditions (triple rule-out: CAD, aortic dissection, PE) 	 Evaluation of graft patency after CABG Evaluation of unknown graft anatomy prior to ICA Localization of cardiac structures prior to redo- sternotomy 	 Symptomatic patients with a stent23mm in diameter Evaluation of native coronary arteries in CABG patients 	 Calcium score of actic valve to assess disease severity if discordant echo results Planning of TAVI Assessment of valve thrombosis, infective endocarditis, or valve degeneration after TAVI 	 Pre-procedural planning of transcatheter mitral valve intervention, atrial fibriliation ablation, ventricular tachycardia ablation, and LAA closure Ruling-out left atrium and LAA thrombus 	 Patients with reduced ejection fraction and low- to-intermediate pre-test probability of CAD Coronary vein anatomy before left ventricular lead placement 	 Patients with suspected or known coronary artery anomalies Coronary imsging procedural planning in neonates and children with congenital heart disease 	•FFR _{ct} could be considered as an alternative for other stress tests	CTP imaging could be considered as an alternative for other stress tests	 In selected cases, late iodine enhancement CT imaging could be helpful to identify the etiology of cardiomyopathy

CTA Evidence - Rapid Advancement with Numerous High Quality Clinical Trials

Source: Shaw Circ Cardiovasc Imaging 2017 Dec;10(12).

Computed Tomography in CCS

REVASCULARIZATION

Performance dei principali test diagnostici non invasivi

ESC Guidelines for the diagnosis and management of chronic coronary syndromes		
Recommendations	Class ^a	Level ^b
Non-invasive functional imaging for myocardial ischaemia ^c or coronary CTA is recommended as the initial test to diagnose CAD in symptomatic patients in whom obstructive CAD cannot be excluded by clinical assessment alone. ^{4,5,55,73,78–80}	I.	В
It is recommended that selection of the initial non-invasive diagnostic test is done based on the clinical likelihood of CAD and other patient characteristics that influence test performance, ^d local expertise, and the availability of tests.	1	с
Functional imaging for myocardial ischaemia is recommended if coronary CTA has shown CAD of uncertain functional sig- nificance or is not diagnostic. ^{4,55,73}	I.	в
Invasive coronary angiography is recommended as an alternative test to diagnose CAD in patients with a high clinical likeli- hood, severe symptoms refractory to medical therapy or typical angina at a low level of exercise, and clinical evaluation that indicates high event risk. Invasive functional assessment must be available and used to evaluate stenoses before revas- cularization, unless very high grade (>90% diameter stenosis). ^{71,72,74}	I	в
Invasive coronary angiography with the availability of invasive functional evaluation should be considered for confirmation of the diagnosis of CAD in patients with an uncertain diagnosis on non-invasive testing. ^{71,72}	lla	в
Coronary CTA should be considered as an alternative to invasive angiography if another non-invasive test is equivocal or non-diagnostic.	lla	с
Coronary CTA is not recommended when extensive coronary calcification, irregular heart rate, significant obesity, inabil- ity to cooperate with breath-hold commands, or any other conditions make obtaining good image quality unlikely.	ш	с
Coronary calcium detection by CT is not recommended to identify individuals with obstructive CAD.	ш	С

Computed Tomography in CCS

REVASCULARIZATION

0.3% event rate/year when coronary CTAis normal

R-A p<0.0001 (adjusting for risk factors, chest pain, + dyspnea), Mild (30%-49%), Mod. (50%-69%), & Severe (≥70%).

Source: Min et al. J Am Coll Cardiol 2007

Non solo rule-out stenosi: CAD non ostruttiva

Tassi di eventi nella CAD non ostruttiva

Figure 1. Meta-Analysis of the Prevalence and Clinical Outcomes of Patients Undergoing CCTA with Nonobstructive CAD. Cardiac events were evaluated for nonobstructive CAD (1-49% Stenosis) among patients presenting with suspected disease in 17 published reports (N=49,957) with a median of 2.5 years of follow-up. There is an admixture of event types (all-cause or CAD mortality, ACS, or Revascularization) and length of follow-up (Range: 1.7-10.0 years). There is an 8-fold higher rate of events among patients with nonobstructive CAD as compared to those with No Stenosis or Plaque. Note that the two figures have

Mild non-obstructive Plaques Cause Adverse Events

2,583 patients undergoing CCTA with <50% stenosis followed for 3.1 years

Figure 5: Kaplan-Meier analysis of MACE-free survival for participants as stratified by SIS. MACE = major adverse cardiovascular event, SIS = segment involvement score.

Radiology: Cardiothoracic Imaging

Morfologia e composizione della placca ateromasica

Calcified Plaque CT attenuation of ≥ 130 HU, separated from the contrast-enhanced lumen > 2 independent planes

Mixed Plaque Calcified and Non-calcified Plaque per segment

Non-Calcified Plaque

CT attenuation below contrast-enhanced lumen but above the surrounding tissue/ epicardial fat > 2 independent planes

Type of plaque \rightarrow High-risk coronary plaque features

A Low-attenuation plaque

B Positive remodeling

C Napkin-ring sign

D Spotty calcification

Puchner, et al. JACC 2014

High risk plaque → increased event rates

3x more likely to have CV death or non-fatal MI with adverse plaque

Williams et al, JACC 2019

Higher risk of MACE with HRP in patients with nonobstructive disease

Ferencik et al, JAMA Cardiol 2018

Risk v.s. Narrowing

Coronary stenosis severity prior to MI >70% Stenosis 14% 18% 68% <50% Stenosis

Most Myocardial Infarctions Are Caused by Low-Grade Stenoses

ACS increases with %DS, most precursors of ACS cases and culprit lesions are nonobstructive.

Plaque evaluation, including HRP, PB, and plaque composition, identifies high-risk patients above and beyond stenosis severity.

Participant flow diagram for the ISCHEMIA trial Curr Treat Options Cardio Med (2021) 23: 36

Page 3 of 11 36

Computed Tomography in CCS

REVASCULARIZATION

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2020 PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION VOL. 76, NO. 11, 2020

FIGURE 1 The SCOT-HEART Trial

CARDIOVASCULAR MEDICINE AND SOCIETY

Current Evidence and Recommendations for Coronary CTA First in Evaluation of Stable Coronary Artery Disease

Michael Poon, MD,^a John R. Lesser, MD,^b Cathleen Biga, MSN, RN,^c Ron Blankstein, MD,^{d,e} Christopher M. Kramer, MD,^f James K. Min, MD,^{g,h} Pamela S. Noack, PnD, MBA,^a Christina Farrow,¹ Udo Hoffman, MD, MPH,¹ Jaime Murillo, MD,^k Koen Nieman, MD, PnD,¹^m Leslee J. Shaw, PnDⁿ

Treating Atherosclerosis Improves Outcomes: SCOT-HEART

A coronary computed tomography (CT) angiography-first approach resulted in a 41% reduction in cardiac death and myocardial infarction (MI) and significantly more early initiation of preventive therapy (Tx). CABG = coronary artery bypass graft; Cath = catheterization; CTA = computed tomography angiography; NS = not significant; PCI = percutaneous coronary intervention; SCOT-HEART = Scottish Computed Tomography of the Heart; SOC = standard of care. Reprinted with permission from Newby et al. (1).

Statins induced phenotypic plaque transformation

JACC: CARDIOVASCULAR IMAGING © 2018 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER

VOL. **B**, NO. **B**, 2018

Effects of Statins on Coronary Atherosclerotic Plaques

The PARADIGM (Progression of AtheRosclerotic PIAque DetermIned by Computed TomoGraphic Angiography Imaging) Study

Sang-Eun Lee, MD, PhD,^{*,b} Hyuk-Jae Chang, MD, PhD,^{*,b} Ji Min Sung, PhD,^{*,b} Hyung-Bok Park, MD,^{*,c} Ran Heo, MD,^{*,cl} Asim Rizvi, MD,^{*} Fay Y. Lin, MD,^{*} Amit Kumar, MSc,^{*} Martin Hadamitzky, MD,[†] Yong Jin Kim, MD, PhD,[#] Edoardo Conte, MD,[†] Daniele Andreini, MD, PhD,[†] Gianluca Pontone, MD, PhD,[†] Matthew J. Budoff, MD,[†] tan Gottlieb, MD, PhD,[†] Byoung Kwon Lee, MD, PhD,[‡] Eun Ju Chun, MD, PhD,[†] Filippo Cademartiri, MD, PhD,[®] Erica Maffei, MD,[®] Hugo Marques, MD,^o Jonathon A. Leipsic, MD,[®] Sanghoon Shin, MD,[§] Jung Hyun Choi, MD, PhD,[†] Kavitha Chinnaiyan, MD,[®] Gilbert Raff, MD,[§] Renu Virmani, MD,[†] Habib Samady, MD,[§] Peter H. Stone, MD,[®] Daniel S. Berman, MD,^w Jagat Narula, MD, PhD,^{*} Leslee J. Shaw, PhD,[®]

(A) Representative coronary computed tomography angiography images of lesions at baseline and tollow-up. (B) Annualized change in percent atheroma volume (PAV) and PAV by composition according to statin. Annualized change in PAV per lesion was lower in statin-taking patients (green bars) than in statin-naise instructions (pink bars), driven from slower progression of noncalcified PAV. Noncalcified PAV is the summation of fibrous, fibro-fatty, and low-attenuation PAV.

* Adjusted: Age, sex, hypertension, diabetes, family history, smoking, baseline PV, and change in LDL level

Reduced the Risk of Overall HRP features and PR

AMRUS uore / Quello che le Linee Guida Non Dicono

Association of Statin Treatment With Progression of Coronary Atherosclerotic Plaque Composition

JAMA Cardiol, Published online August 18, 2021, doi:10.1001/jamacardio.2021.3055

Circulation. 2021 September 28; 144(13): 1008-1023. doi:10.1161/CIRCULATIONAHA.120.046791.

Natural History of Patients with Ischemia and No Obstructive Coronary Artery Disease: the CIAO-ISCHEMIA Study

Harmony R. Reynolds, MD¹, Michael H. Picard, MD², John A. Spertus, MD, MPH³, Jesus Peteiro, MD⁴, Jose Luis Lopez Sendon, MD⁵, Roxy Senior, MD^{6,7}, Mohammad C. El-Hajjar, MD⁸, Jelena Celutkiene, MD, PhD⁹, Michael D. Shapiro, DO, MCR¹⁰, Patricia A. Pellikka, MD¹¹, Dennis F. Kunichoff, MPH¹, Rebecca Anthopolos, DrPH¹, Khaled Alfakih, MBBS, MD¹², Khaled Abdul-Nour, MD¹³, Michel Khouri, MD¹⁴, Leonid Bershtein, MD, PhD¹⁵, Mark De Belder, MD¹⁶, Kian Keong Poh, MD^{17,18}, John F. Beltrame, BSc, BMBS, PhD¹⁸, James K. Min, MD¹⁹, Jerome L. Fleg, MD^{20,22}, Yi Li, MS¹, David J. Maron, MD²¹, Judith S. Hochman, MD¹

¹New York University Grossman School of Medicine, New York, NY, USA

CENTRAL ILLUSTRATION INOCA in the ISCHEMIA Study

8,518 ISCHEMIA Enrolled Participants

13% INOCA

Moderate or severe ischemia Core lab-verified Exclusion of prior PCI. CABG.

Ischemia severity not

associated with extent of nonobstructive CAD on CCTA INOCA associated with:

- Female sex
- Younger age
- Relatively less severe ischemia

Women >4-fold odds of INOCA vs men on multivariate analysis

Reynolds HR, et al. J Am Coll Cardiol Img. 2023;16(1):63-74.

We analyzed the prevalence of ischemia with nonobstructive coronary arteries (INOCA), defined as coronary computed tomography angiogram (CCTA) showing <50% diameter stenosis in all coronary arteries, among participants enrolled in ISCHEMIA (International Study of Comparative Health Effectiveness with Medical and Invasive Approaches). Participants with INOCA identified on CCTA were excluded from randomization in the trial. Clinical and stress test variables associated with INOCA are shown. Female sex was strongly associated with INOCA on multivariable analysis. Ischemia severity and extent of nonobstructive coronary artery disease (CAD) on CCTA were not correlated, whether CAD was assessed based on the number of segments with plaque, or incorporated the severity of plaque and the number of segments affected, in the segment stenosis score. CABG = coronary artery bypass grafting; PCI = percutaneous coronary intervention.

uninterpretable CCTA or no CCTA

Figure 1. Association between ischemia severity and outcomes.

Figure 2. Association between CAD severity and outcomes.

Napoli, Hotel Excelsior - 14-15 aprile 2023

European Aeart Journal (2022) **00**, 1–10 European Society of Cardiology https://doi.org/10.1093/eurhearti/ehac597

GREAT DEBATE Imaging

Great Debate: Computed tomography coronary angiography should be the initial diagnostic test in suspected angina

Graphical Abstract

VOL. . NO. . 202

Napoli, Hotel Excelsior - 14-15 aprile 2023

JACC: CARDIOVASCULAR IMAGING CROWN COPYRIGHT & 2022 PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION. ALL RIGHTS RESERVED.

ORIGINAL RESEARCH

National Trends in Coronary Artery Disease Imaging

Associations With Health Care Outcomes and Costs

Jonathan R. Weir-McCall, PaD,^{a,b} Michelle C. Williams, PaD,^c Anoop S.V. Shah, PaD,^d Giles Roditi, MBCaB,^e James H.F. Rudd, PaD,^a David E. Newby, PaD,^c Edward D. Nicol, $MD^{f,e}$

FIGURE 2 Comparison of Changes in Mortality From Cardiovascular Causes With Changes in CCTA Use

Maps represent changes in imaging use for CCTA (A) and SPECT (B) across the 42 healthcare regions from 2012 to 2018. (C) The change in cardiovascular death within a year of imaging in the same health care regions over the same study period. Abbreviations as in Figure 1.

European Society doi:10.1093/european/Journal of Preventive Cardiology (2022) 29, 608–624 Risk Prediction/Assessment & Stratification

Cardiovascular risk stratification by coronary computed tomography angiography imaging: current state-of-the-art

Alexios S. Antonopoulos 0 ^{1,2}, Andreas Angelopoulos¹, Konstantinos Tsioufis¹, Charalambos Antoniades 0 , and Dimitris Tousoulis 0 ¹

¹tst Department of Cardiology, Hippolration Hospital, National and Kapodistrian University of Athens, 114 Vas. Sofias Avenue, 11527, Athens, Greece; and ³RDM Division of Cardiovascular Medicine, Oxford Academic CT Programme, University of Oxford, John Radcliffe Hospital, Headley Way, OX3 9DU Oxford, UK

Grazie per la vostra attenzione

carlo.tedeschi@aslnapoli1centro.it

Dr. Carlo Tedeschi

EACVI Level 3 CT UO Cardiologia PSI Napoli Est Radiologia Ospedale del Mare

		Siemens	cFFR			
	HeartFlow FFR _{CT}	Computational fluid dynamics- based	Machine learning- based	Pulse CT-QFR	Canon CT-FFR	
3D anatomical model		≥64 detecto	or CT scanner		320 detector CT scanner	
Analysed vessel diameter in studies	ysed vessel >1.8 mm ≥1.5 mm ≥1.5 mm		≥ 1.5 mm	≥ 1.8 mm		
Physiological model Boundary conditions Microvascular resistance	Resting coronary flow (Q ∝ myc Distribution of coronary f law: Q ∝ d ³ (Patient-specific microva Simulation of hyper microvas	Resting coronary flow (Q) by allometric scaling laws: $\mathbf{Q} \propto \mathbf{myocardial\ mass}$ istribution of coronary flow over 3D model by Murray's law: $\mathbf{Q} \propto \mathbf{d}^3$ (d: vessel diameter) Patient-specific microvascular resistance (R): $\mathbf{R} \propto \mathbf{d}^{-3}$ Simulation of hyperaemic state by reducing the microvascular resistance (RFV: resting flow		Q ~ V ³ / ₄ (V: reference arterial volume) Conversion resting flow to virtual hyperaemic flow (HFV): HFV=0.10+1.55⋅RFV -0.93⋅RFV ² (RFV: resting flow velocity)	Coronary flow: •∆ cross-sectional vessel area using 4 diastole phases Microvascular resistance: •minimised during diastole •constant resistance such that coronary pressure ∝ flow	
	Full 3D CFD modelling by parallel supercomputer		Reduced-ord	er CFD modelling by standard des	ktop computer	
Computation of flow Computational fluid dynamics (CFD) simulation of coronary flow	0,97 0,88 0,95 0,92 0,92 0,84 0,84 0,84 0,84 0,84 0,84 0,84 0,84	CFD-based	0.7 ML-based		1(0.64)	
Physiological model generation time	Full-order model	30 to 60) min	17 min (average)		
Coronary flow computation time	transfer	10 min	<2 sec	19 sec (average)	39,410.0 min	

AMRUS Uore / Quello che le Linee Guida Non Dicono

Napoli, Hotel Excelsior - 14-15 aprile 2023

Adoption of 2019 ESC Guideline (GL) recommendations for the diagnosis of chronic coronary syndromes

ESC European Society of Cardiology European Heart Journal (2023) 44, 142–158 https://doi.org/10.1093/eurheart/jehac640 CLINICAL RESEARCH Ischaemic heart disease

Use of cardiac imaging in chronic coronary syndromes: the EURECA Imaging registry

Danilo Neglia (1.2*[†], Riccardo Liga ^{3.4†}, Alessia Gimelli ¹, Tomaž Podlesnikar ^{5.6}, Marta Cvijić^{5.7}, Gianluca Pontone ⁸, Marcelo Haertel Miglioranza ^{9,10,11}, Andrea Igoren Guaricci ¹², Sara Seitun ¹³, Alberto Clemente ¹, Alexey Sumin ¹⁴, João Vitola ¹⁵, Antti Saraste ¹⁶, Christian Paunonen ¹⁶, Ching-Hui Sia ¹⁷, Filipp Paleev ¹⁸, Leyla Elif Sade ¹⁹, Jose Luis Zamorano ²⁰, Natallia Maroz-Vadalazhskaya ²¹, Constantinos Anagnostopoulos ²², Filipe Macedo ²³, Juhani Knuuti ²⁴, Thor Edvardsen ^{25,26}, Bernard Cosyns ^{27,28}, Steffen E. Petersen ^{29,30}, Julien Magne ^{31,32,33}, Cecile Laroche³⁴, Clara Berle³⁴, Bogdan A. Popescu ³⁵, and Victoria Delgado ^{36,37}*, for the EURECA Investigators[‡] Tests Performed (% of 5156 pts)

Effects on referral to invasive coronary angiography (ICA) and revascularization (% of patients) Effects on diagnostic and therapeutic yield of invasive coronary angiography (% of ICA)

% of patients referred to ICA P<0.001 100% 100% 80% 80% 60% 60% 40% 40% 20% 20% 0% 0% Adoption of GL Non-adoption of GL

Meta-Analysis of CTA vs. Stress Testing

Source: Blankstein JACC 2017;69:1771-1773., Bittencourt Circulation 2016;133:1963-1968., Bittencourt Circ CV Imag 2016;9:e004419.

Modiif. da: Cardiovasc Diagn Ther 2020;10(6):1979-1991 | http://dx.doi.org/10.21037/cdt-20-526

Accuratezza diagnostica ruling-out / in

Supplementary Table 1. Anatomical diagnostic performance of CCTA with ICA as a standard reference.

Study/Author	Reference standard (ICA)	Year	Number of Patients	Sensitivity	Specificity	PPV	NPV	+LR	-LR	Accuracy
ACCURACY (Budoff MJ et al.)	≥50%	2008	230	95	83	64	99	5.56	0.06	NA
Meijboom WB et al.	≥50%	2008	360	99	64	86	97	2.76	0.01	88
MINISCAD (Marano R et al.)	>50%	2009	327	94	88	91	91	7.83	0.07	91
CORE-64 (Arbab-Zadeh A et al.)	≥50%	2012	273	91	87	9	88	7.00	0.10	NA
EVINCI (Neglia D et al.)	>70%, 30-70% with FFR ≤0.80, or LM >50%	2015	475	91	92	83	96	11.38	0.10	91
Budoff MJ et al.	>50%	2017	77	85	90	81	92	8.50	0.17	NA
PICTURE (Budoff MJ et al.)	≥50%	2017	230	92	78	82	90	4.18	0.10	NA
Andreini D et al.: Patients with atrial fibrillation	>50%	2017	83	95	98	95	98	39.00	0.05	96
Andreini D et al.: Patients with heart rate ≥80bpm	>50%	2018	40	100	82	100	82	5.56	0	90
Motoyama S et al.: UHR-CT, Median CACS 171	≥75%	2018	59	100	80	94	100	5.00	0	NA
Takagi H et al.: UHR-CT, Median CACS 250	≥50%	2018	38 Vessels: 113	100 96	67 81	94 80	100 96	3.00 4.96	0 0.05	95 88
VERDICT: NSTEACS (Linde JJ et al.)	≥50%	2020	1,023	97	72	91	88	3.49	0.05	89
Latina J et al. ¹⁵ : UHR-CT, Median CACS 1205	≥70%	2021	15 Vessels: 86	100 86	100 88	100 70	100 95	- 7.17	0 0.16	NA NA
CREDENCE: AI-QCT (Griffin WF et al. ¹⁹)	≥50% ≥70%	2022	303	94 94	68 82	81 69	90 97	2.94 5.22	0.09 0.07	84 86

AI-QCT: artificial intelligence-enabled quantitative coronary computed tomography angiography; CACS: coronary artery calcium score; CCTA: coronary computed tomographic angiography; ICA: invasive coronary angiography; NPV: negative predictive value; NSTEACS: non-ST-segment-elevation acute coronary syndrome; PPV: positive predictive value; UHR-CT: ultra-high-resolution CT; -LR: negative likelihood ratio; +LR: positive likelihood ratio.

PROGNOSI

Table 2 Large prospective clinical studies on the prognostic value of coronary computed tomography angiography (beyond calcium scoring)

Clinical risk models		c-index, mean(range)	
ССТА ^{4,76,125–131}		0.76 (0.64–0.62)	
$CCTA + HRP^{14,76,127,128}$		0.78 (0.71–0.91)	
$CCTA + HRP + FAI^{14,106,132}$		0.90 (0.84–0.96)	
Author	Sample size	Population type	Main findings
Kwon et al. 2011 ¹²⁵	4338	Low-risk patients underwent CCTA for evaluation of suspected CAD	The predictive value of CCTA was superior to CCS for MACEs.
Chow et al. 2011 ¹³¹	14 064	CONFRIM registry	CCTA measures of CAD severity presented better prognostic performance for all-cause mortality over routine clinical predictors and LVEF.
Hou et al. 2012 ¹²⁶	5007	Symptomatic patients who underwent CCTA	CCS presented prognostic benefit for MACEs when added to clinical risk factors. Prognostic performance was further improved with CCTA on top of CCS.
Versteylen <i>et al.</i> 2013 ¹²⁷	2054	Stable symptomatic patients who underwent CCTA	CCS added to FRS had better prognostic performance for ACS prediction. Semiautomated plaque quantification added to FRS further improved prognostic performance for ACS.
Hadamitzky et al. 2013 ¹²⁸	1584	Patients with suspected CAD	Total plaque score had an additive predictive value added to Morise score and CCS for cardiac events.
SCOT-HEART investigators ⁴	4146	Patients referred for assessment of suspected angina	The addition of CCTA to standard clinical care enhanced diagnostic certainty for angina due to CAD, also reducing the need for further stress testing.
Han et al. 2017 ¹²⁹	3145	Patients that underwent diagnostic CCTA	CCTA improved prognostic performance for MACEs beyond a model included FRS and CCS in asymptomatic older adults.
Budoff et al. 2018 ¹³⁰	10 003	Symptomatic patients with an intermediate pretest probability	CCS had similar prognostic ability with functional testing for MACEs. CCTA
		for CAD randomized to functional or anatomic testing with CCTA	had significantly higher prognostic value compared to functional testing and CCS.
Ferencik et al. 2018 ⁷⁶	4415	Stable symptomatic patients who underwent CCTA	HRP was associated with higher risk for MACE and had better prognostic performance for MACEs when added to a model including ASCVD risk score and luminal stenosis.
Oikonomou <i>et al</i> . 2018 ¹⁴	3912	Patients with an indication for CCTA	High perivascular FAI values around proximal right coronary artery and left anterior descending coronary artery were predictive of all-cause and cardiac mortality and improved risk discrimination and reclassification on top of risk factors, CCTA and HRP.
Oikonomou <i>et al</i> . 2019 ¹⁰⁶	5742	 167 patients undergoing cardiac surgery, 5487 participants in the CRISP-CT and SCOT HEART, 44 patients with MI and 44 stable CAD controls 	A machine learning-derived radiotranscriptomic profile of pericoronary fat (Fat Radiomic Profile) significantly improved prediction for MACEs beyond traditional risk stratification (including risk factors, CCS, coronary stenosis and HRP features).

Definizioni di placche ad "alto rischio" alla Cardio TC

Clinical applications of cardiac computed tomography: a consensus paper of the European Association of Cardiovascular Imaging—part II

Gianluca Pontone ()^{1,4,†}, Alexia Rossi^{2,3,†}, Marco Guglielmo ()¹, Marc R. Dweck ()⁴, Oliver Gaemperli⁵, Koen Nieman ()⁶, Francesca Pugliese ()^{7,8}, Pal Maurovich-Horvat ()⁹, Alessia Gimelli ()¹⁰, Bernard Cosyns ()¹¹, and Stephan Achenbach ()¹²

Table 2 Definitions of adverse plaque characteristics

HRP feature	Definition
Low attenuation plaque	Presence of a central area within the plaque characterized by low CT attenuation <30 HU. ¹⁰
Positive remodelling or remodelling index (RI)	Presence of an outer vessel diameter which is >10% of the diameter of the reference normal segment within the same vessel (RI >1.1). ¹⁰
Spotty calcification	Small focal calcifications <3 mm diameter in any direction. ¹⁰
Napkin-ring sign	Central area of low CT attenuation that is apparently in contact with the lumen and is surrounded by a rim of higher attenuation. ¹¹

CT, computed tomography; HU, Hounsfield unit; RI, remodelling index.

High Risk Plaque

Trial	Motoyama et al. ¹⁰	Motoyama et al. ¹⁸	Nadjiri et al. ¹⁹	Feuchtner et al. ¹⁶	Ferencik et al. ¹²	Finck et al. ¹⁷	Williams et al. ²¹	Senoner et al. ²⁰	Yamamoto et al. ²²
Study design	Retrospective, observational study	Retrospective, observational study	Retrospective, observational study	Prospective, observational study	RCT	Prospective, observational study	RCT	Prospective, observational study	Prospective, ob- servational study
Sample size	1059	3158	1168	1469	4415	1615	1769	1430	2083
Population	Suspected or known CAD	Suspected or known CAD	Suspected CAD	Suspected CAD, low to intermedi ate pre-test probability	Suspected CAD	Suspected CAD	Suspected CAD	Suspected CAD, low to intermediate pre-test probability	Suspected CAD
Follow-up (years)	2.3	3.9	5.7	7.8	2.1	10.5	4.7	10.5	2
Primary endpoint	ACS	ACS	Cardiac death, Ml, un- stable angina, and coronary revascularization	STEMI, NSTEMI, unstable angina	Death from any cause, MI, and hospitalization for unstable angina	Cardiac death or nonfatal MI	Fatal or nonfatal MI	Fatal and nonfatal MACE	Cardiac death, non-fatal acute coronary syn- drome, and coronary revasculariza- tion >3 months after indexed CCTA
Rate of primary endpoint (%)	1.4	2.8	3.9	2.8	3.0	3.1	2.3	3.9	3.5
Plaque feature	LAP, PR	LAP, PR	PR, NRS, SC	LAP, NRS, SC	LAP, PR, NRS	LAP, NRS, SC	LAP	LAP, PR, NRS, SC	LAP, PR, NRS, SC
Adjusted hazard ratio (95% CI)	LAP and/or PR: 22.79 (6.91–75.17)	LAP and/or PR: 13.13 (3.80–82.66)	PR: 1.04 (0.95–1.1) NRS: 1.4 (0.6–2.9) SC: 1.07 (0.5–2.2)	LAP: 4.5 (1.4–14.8) NRS: 7.0 (2.0–13.6) SC: 2.6 (1.1–6.5)	At least one high risk feature present: 1.72 (1.13–2.62)	LAP: 1.29 (0.40-4.15) NRS: 2.25 (1.09-4.65) SC: 2.35 (0.94-5.90)	LAP: 1.60 (1.10–2.34)	LAP: 4.00 (1.52–10.52) PR: 0.56 (0.18–1.75) NRS: 4.11 (1.77–9.52) SC: 1.40 (0.65–2.98)	≥2 adverse char- acteristics: 1.95 (1.13– 3.34)

ACS, acute coronary syndrome; CAD, coronary artery disease; CCTA, coronary computed tomography angiography; CI, confidence interval; LAP, low-attenuation plaque; MACE, major adverse cardiovascular events; MI, myocardial infarction; NRS, napkin-ring sign; NSTEMI, non-ST elevation myocardial infarction; PR, positive remodelling; RCT, randomized clinical trial; SC, spotty calcification; STEMI, ST elevation myocardial infarction.

le 1-STD-1.3.12.2.1107.5.1.4.105583 SY

A 0.6 Bv38 5 BestDiast VIA co 67 %

Coronaria SN 7,5 fps Media_03 SimpleAcquisition/Monoplane/Original/PlaneA/Instance 1_01 # 4320673 1/30/2023 5:24:19 PM 4 IMA 1 FRM 13

TODI NOOLOLO

65 bpm, 67 % D, 75 ms

Hotel Excelsior - 14-15 aprile 2023

RCA

Early Rates of Invasive Angiography and Revascularisation

Lancet 2015;385:2383-2391

N Engl J Med 2015;372:1291-1300

AMPUS uore / QuRano 10 10 10 10 10 10 10 10 10 TC nel rule-out sopsetta. GABr - 14-15 aprile 2023

 Identify very low risk patients

 Improved patient risk stratification

 Identify those at highest risk patients

Anti-inflammatory therapy PCSK9i Lp(a) lowering treatment **Icosapent Ethyl Oral anticoagulants Bempedoic acid** Ezetimibe SGLT2i/GLP1-RA **Antiplatelet Rx BP** control **Aggressive Lifestyle changes**

AMRUS uore / Quello che le Linee Guida Non Dicono

Association of Statin Treatment With Progression of Coronary Atherosclerotic Plaque Composition

JAMA Cardiol, Published online August 18, 2021, doi:10.1001/jamacardio.2021.3055

Original Article

Prognostic and Therapeutic Implications of Statin and Aspirin Therapy in Individuals With Nonobstructive Coronary Artery Disease

Results From the CONFIRM (Coronary CT Angiography Evaluation For Clinical Outcomes: An International Multicenter Registry) Registry

Benjamin J.W. Chow, Gary Small, Yeung Yam, Li Chen, Ruth McPherson, Stephan Achenbach, Mouaz Al-Mallah, Daniel S. Berman, Matthew J. Budoff, Filippo Cademartiri, Tracy Q. Callister, Hyuk-Jae Chang, Victor Y. Cheng, Kavitha Chinaiyan, Ricardo Cury, Augustin Delago, Allison Dunning, Gundrun Feuchtner, Martin Hadamitzky, Jörg Hausleiter, Ronald P. Karlsberg, Philipp A. Kaufmann, Yong-Jin Kim, Jonathon Leipsic, Troy LaBounty, Fay Lin, Erica Maffei, Gilbert L. Raff, Leslee J. Shaw, Todd C. Villines, James K. Min; on behalt/for the CONFIRM Investigators

10,418 patients with <50% stenosis (57 <u>+</u> 12 years; 53% male)

Figure 3.

Kaplan-Meier survival curves as a function of statin use in patients with coronary plaque.

Nonobstructive CAD							
Models	Hazard Ratio* (95% CI)	<i>P</i> Value					
All patients (n=10 418)							
Statin therapy	0.52 (0.34-0.79)	0.002					
ASA therapy	0.77 (0.53-1.12)	0.173					
Nonobstructive CAD (n=4706)							
Statin therapy	0.39 (0.23-0.65)	<0.001					
ASA therapy	0.66 (0.42-1.04)	0.070					
No coronary plaque (n=5712)							
Statin therapy	0.64 (0.30-1.37)	0.252					
ASA therapy	0.73 (0.37-1.47)	0.384					

Table 4. Cox Models for All-Cause Mortality in Patients With

CAD indicates coronary artery disease; and Cl, confidence interval.

*Adjusted for National Cholesterol Education Program/Adult Treatment Program III risk.

Figure 2. Kaplan–Meier survival curves as a function of statin use in patients without coronary plaque.

Journal of Cardiovascular Computed Tomography Volume 15, Issue 2, March-April 2021, Pages 93-109

Guidelines Society of Cardiovascular Computed Tomography / North American Society of Cardiovascular Imaging – Expert Consensus Document on Coronary CT

Consensus Document on Coronary (Imaging of Atherosclerotic Plaque

Leslee J. Shaw¹ A.⁸, Ron Blankstein⁵, Jeroen J. Bax⁴, Marcio Fernenki⁴, Marcio Sommer Bittencourt⁴, James K. Min⁴, Daniel S. Berman F. Jonathon Leipsic⁵, Todd C. Villines¹, Damini Doyl², Subih AlfAref⁷, Michelle C. Williams³, Fay Lin⁴, Lohendran Baskana⁴, Harold Litt, Diana Litmanoich⁴⁴, Ricardo Cury⁴, Umberto Gianni³, Inge van den Hoogen⁴, Alexander R. van Rosendel⁴, Matthew Budoff⁷, Hyuk Jea Chang⁴, Harvey E. Hecht⁴, Gudun Feuchtne⁴, Amir Amadi ⁴, Brian B. Ghoshajra⁴, David Newb⁴, ⁴XS. Chandrashebhar⁴, Jagat Narula⁴

Placche ad alto rischio: impatto prognostico

Figure 5: CT angiography-verified plaque composition and clinical outcomes. CT angiography-based 2-feature positive plaques demonstrate a 45-fold higher likelihood of cardiac events as compared to 2-feature negative plaques at 2 years of follow-up (A) and 9-fold higher event rate up to 10 years of follow-up (B). The extent of necrotic core as represented by LAP volume >4% (C), added severity of luminal stenosis (D) and plaque progression in serial CT angiography (E) improve the discriminatory value of CT angiography. Modified from Williams et al. Circulation 2020 and Motoyama et al. JACC 2015.

Coronary CTA in suspected CAD

PROMISE, N Engl J Med 2015, n = 10 003 CT vs. functional testing

SCOT-Heart, N Engl J Med 2018, n = 4146 CT vs. "standard care" (1:1)