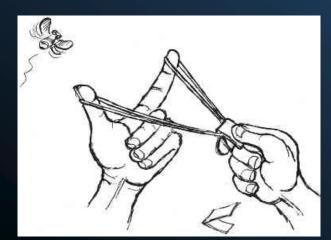
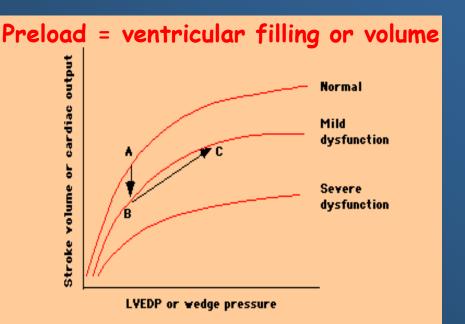

TRATTAMENTO DELL'IPERTENSIONE ARTERIOSA ASSOCIATA A STENOSI VALVOLARE AORTICA

ANTONELLO D'ANDREA

UOC Cardiologia ed UTIC -PO Umberto I° Nocera Inferiore (ASL Salerno)

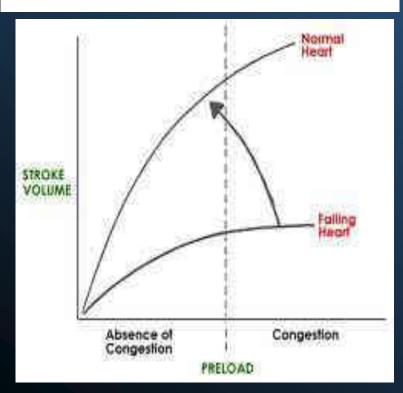

Determinants Of Cardiac Output



Determinants of Cardiac Output: PRELOAD

Amount of stretch of the ventricular myocardium prior to contraction

- Central venous pressure
 (CVP) = right atrial pressure.
 - Pulmonary capillary diastolic wedge pressure (PCWP) = LVEDP



Frank-Starling Mechanism of the Heart

The intrinsic ability of the heart to adapt to changing volumes of inflowing blood

Frank-Starling Relationship Long on Importance, Short on Mechanism

Richard L. Moss, Daniel P. Fitzsimons

- Normal range of the LVEDP,
- 5-6 mmHg

- Optimal initial preload, 15-20 mmHg (Sarcomere, 2.0 - 2.2 μ m) - When the LVEDP > 20 mmHg, LV work is maintained at almost the same level, does not change with the increase of LVEDP

Greater Stretch = Greater Contraction

Determinants of Cardiac Output

AFTERLOAD

The load that a ventricle must overcome while it contracts during ejection

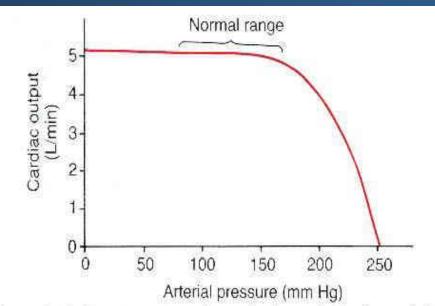
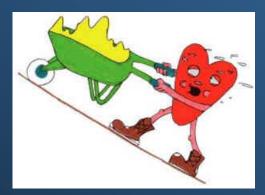
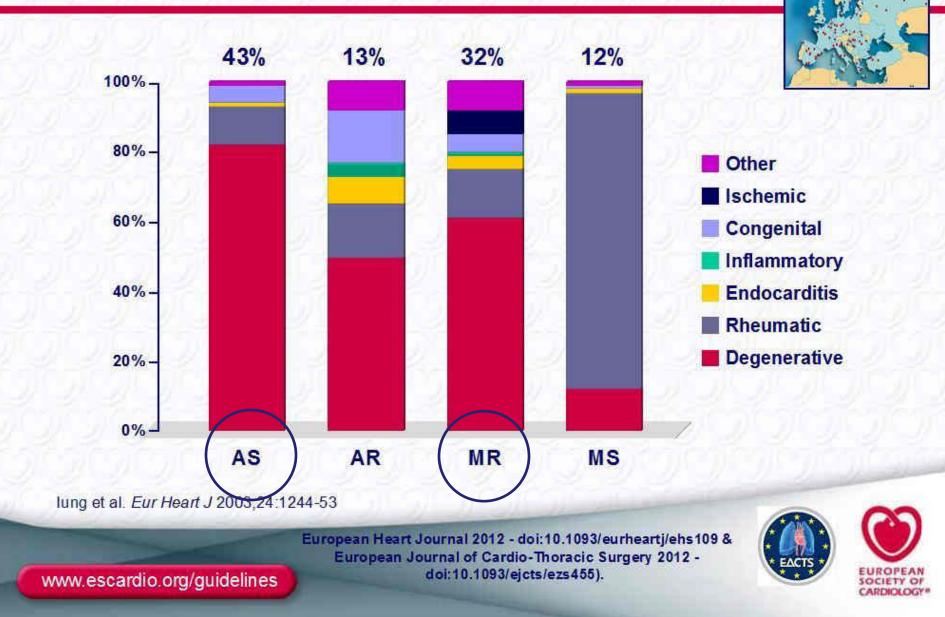




Figure 9-8. Constancy of cardiac output even in the face of wide changes in arterial pressure. Only when the arterial pressure rises above the normal operating pressure range does the pressure load cause the heart to begin to fail.

Aetiologies of Single Valvular Heart Diseases in the Euro Heart Survey

Età Avanzata

Obesità

STAO: un Cardiopatico "Complesso" !!

Ipertensione Arteriosa

BPCO

Diabete Mellito

Insuff. Renale Cronica

Frailty concept. Two 78-year-old patients with severe degenerative aortic stenosis, presenting with comparable Logistic EuroScores (~12%). The patient on the left appears much more frail than that one on the right, in spite of the same chronologic age and same predicted surgical risk.

Ipertensione e Stenosi Aortica

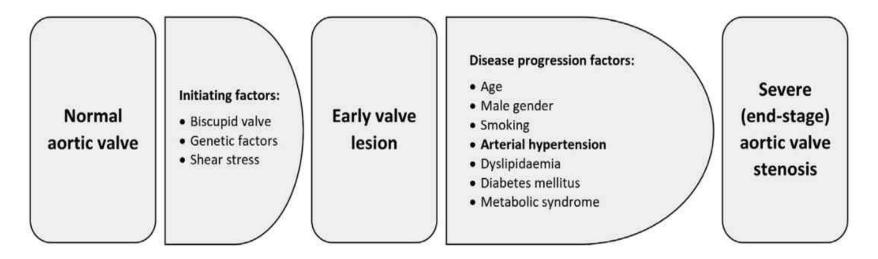


Figure 1 Factors involved in the initiation and progression of aortic valve sclerosis and stenosis.

Ipertensione e Stenosi Aortica

- Prevalenza
- Effetti sulla progressione
- Effetti sulla prognosi
- Effetti sul recupero post-intervento
- Effetti sul calcolo della severità

STENOSI AORTICA SEVERA

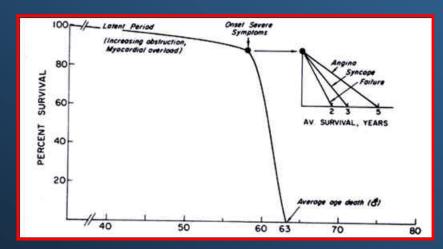
<u>Sintomi e segni</u>

Dolore toracico, sincope, vertigini, dispnea, scompenso cardiaco di nuova insorgenza
Soffio sistolico, scomparsa del II tono (specifico)

ma non sensibile)

Ostacolata eiezione di sangue dal vs (barrage aortico) Aumento del post-carico aumento della P ventricolare (sovraccarico di pressione) ipertrofia concentrica (meccanismo di compenso) alterazioni della fase diastolica (aumento della pressione telediastolica) aumento delle pressioni di riempimento da parte dell'atrio sinistro aumento del tempo di eiezione dal vs + diminuzione della pressione in aorta

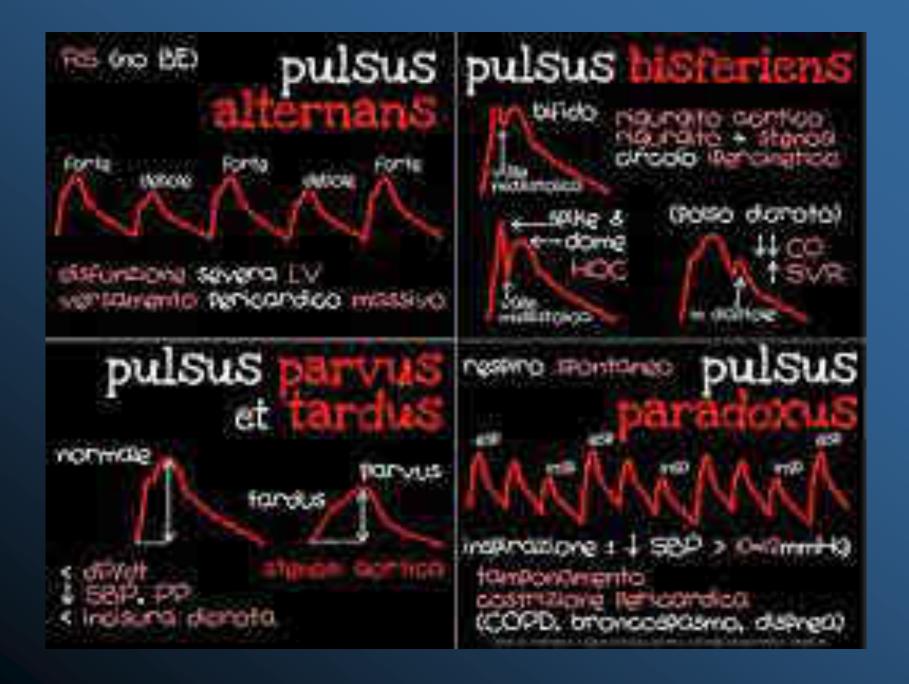
riduzione della perfusione coronarica


aumento del consumo di ossigeno

ischemia miocardica

scompenso ventricolare sinistro (dilatazione VS + insufficienza mitralica)

Dispnea Angina Vertigini Sincope

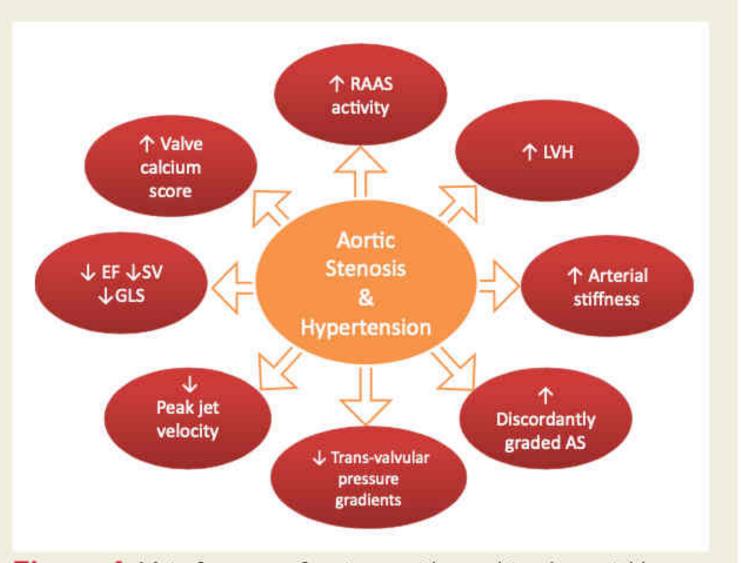

Astenia Affaticabilità Ridotta tolleranza all'esercizio

Ipoperfusione muscolare

Confusione Difficoltà di concentrazione Cefalea Insonnia Ansia

Ipoperfusione cerebrale

REVIEW ARTICLE


Aortic Stenosis, Aortic Regurgitation and Arterial Hypertension

Katsi V^{1,*}, Georgiopoulos G^{1,*}, Oikonomou D², Aggeli C¹, Grassos C³, Papadopoulos DP⁴, Thomopoulos C⁵, Marketou M⁶, Dimitriadis K¹, Toutouzas K¹, Nihoyannopoulos P¹, Tsioufis C¹ and Tousoulis D¹

Epidemiological data suggest a strong association between HT and AS . Antonini-Canterin *et al.* reported that about 30% of patients with symptomatic AS were hypertensive. In the PRO- GRESSA study, 37% of patients with AS had systolic HT Hueb *et al.* reported that 48% of patients with AS were classified as hypertensives, whereas among older patients with AS, HT is a common comorbidity found in up to 78% of patients.

PROGRESSION

 HT may contribute to AVC through induced mechanical stress on the valve causing endothelium injury, and through the well-known activation of the RAAS associated with elevated BP. In addition, HT has been reported as an independent risk factor for AVC and aortic sclerosis in population-based studies

Figure 1 Main features of patients with combined arterial hypertension and aortic stenosis.

ABSOLUTE PROGNOSIS

- Hypertensive patients with asymptomatic AS had a 56% higher rate of ischaemic cardiovascular events and a 2-fold increased CV and total mortality according to a sub-analysis of the (Simvastatin and Ezetimibe in Aortic Stenosis) SEAS study.
- Moreover, in hypertensive patients with symptomatic AS, symptoms occur earlier and with larger valve area compared with normotensive subjects, probably due to the additional overload

PROGNOSIS AFTER AVR

HT influences adversely the prognosis of patients after AVR and is independently associated with CV death.

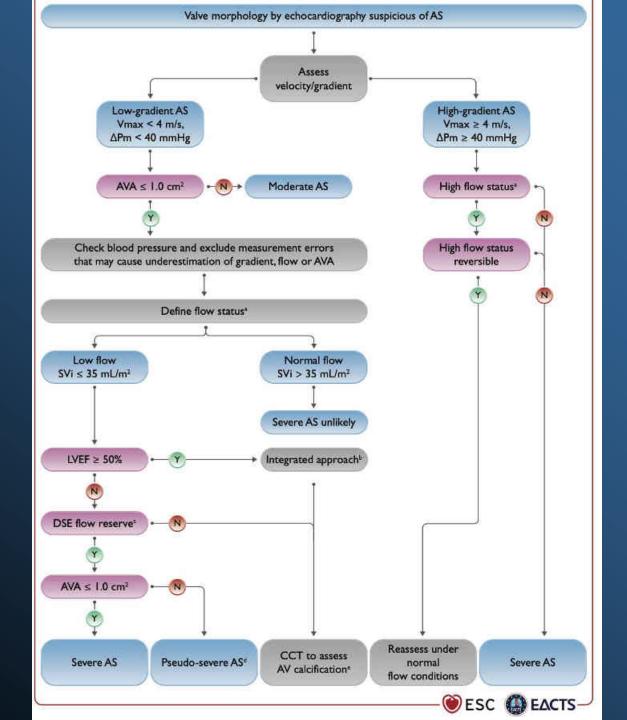
HT impairs LVM regression and reverses remodeling after AVR.

2021 ESC/EACTS Guidelines for the management of valvular heart disease

Developed by the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)

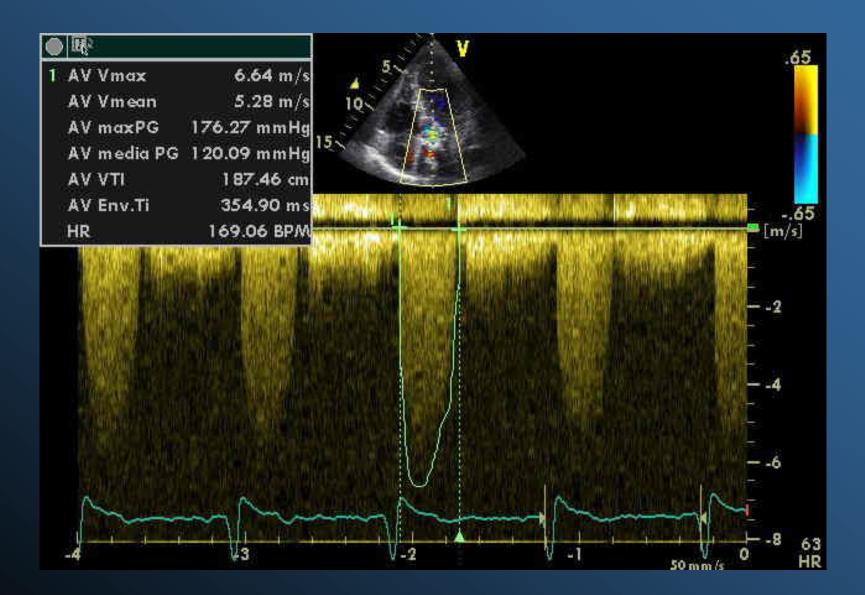
Authors/Task Force Members: Alec Vahanian () * (ESC Chairperson) (France), Friedhelm Beyersdorf^{*1} (EACTS Chairperson) (Germany), Fabien Praz (ESC Task Force Coordinator) (Switzerland), Milan Milojevic¹ (EACTS Task Force Coordinator) (Serbia), Stephan Baldus (Germany), Johann Bauersachs (Germany), Davide Capodanno (Italy), Lenard Conradi¹ (Germany), Michele De Bonis¹ (Italy), Ruggero De Paulis¹ (Italy), Victoria Delgado (Netherlands), Nick Freemantle¹ (United Kingdom), Martine Gilard (France), Kristina H. Haugaa (Norway), Anders Jeppsson¹ (Sweden), Peter Jüni (Canada), Luc Pierard (Belgium), Bernard D. Prendergast (United Kingdom), J. Rafael Sádaba¹ (Spain), Christophe Tribouilloy (France), Wojtek Wojakowski (Poland), ESC/EACTS Scientific Document Group

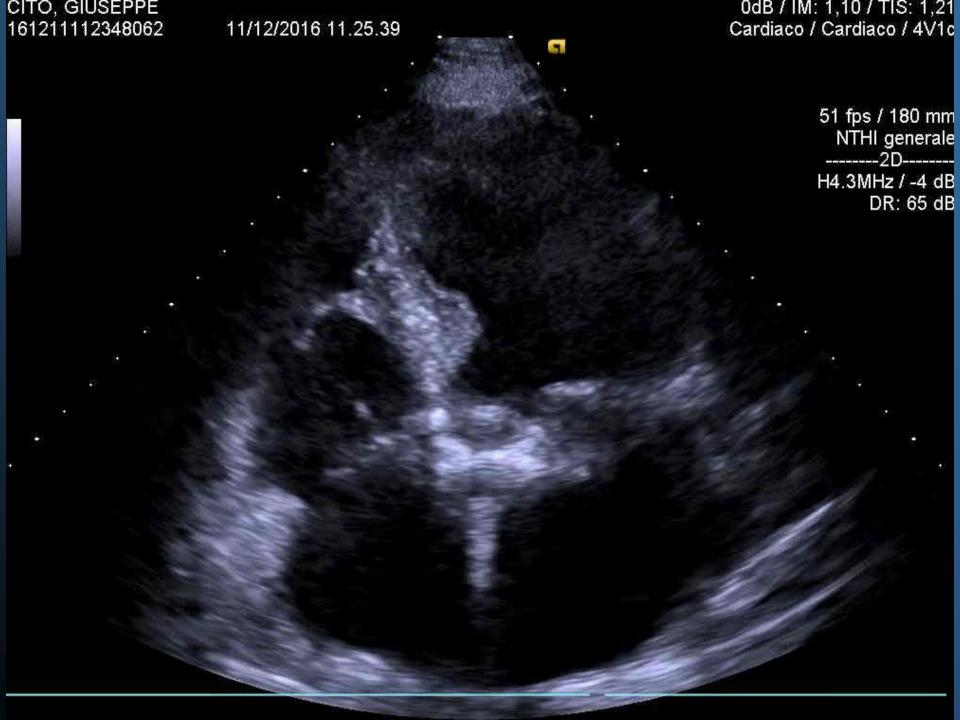
Echocardiographic criteria for the definition of severe valve stenosis: an integrative approach

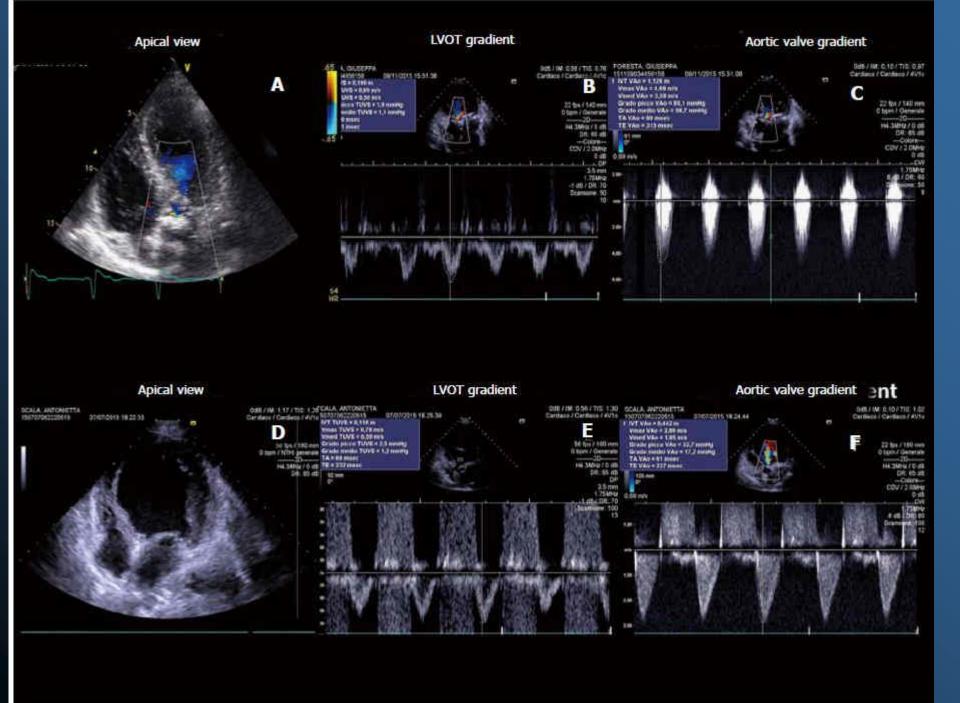

	Aortic stenosis	Mitral stenosis	Tricuspid stenosis
Valve area (cm²)	< 1.0	< 1.0	-
Indexed valve area (cm²/m² BSA)	< 0.6	1.	14 <u>14 -</u> 14
Mean gradient (mmHg)	> 40	> 10	≥ 5
Maximum jet velocity (m/s)	> 4.0	9 9-9 s	1.1-1
Velocity ratio	< 0.25	-	-

Adapted from Baumgartner, EAE/ASE recommendations. Eur J Echocardiogr. 2010;10:1-25

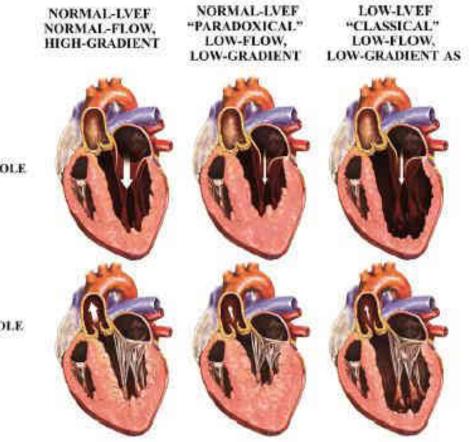
European Heart Journal 2012 - doi:10.1093/eurheartj/ehs109 & European Journal of Cardio-Thoracic Surgery 2012 doi:10.1093/ejcts/ezs455).


www.escardio.org/guidelines




Severità della Stenosi

Stenosi Aortica Severa


Journal of the American College of Cardiology © 2012 by the American College of Cardiology Foundation Published by Elsevirr Inc.

STATE-OF-THE-ART PAPERS

Vol. 60, No. 19, 2012 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2012.06.051

Low-Flow, Low-Gradient Aortic Stenosis With Normal and Depressed Left Ventricular Ejection Fraction

Philippe Pibarot, DVM, PHD, Jean G. Dumesnil, MD Québec City, Québec, Canada

DIASTOLE

SYSTOLE

EACTS Criteria that increase the likelihood of severe AS in pts. with AVA <1.0 cm², mean gradient < 40 mmHg and preserved EF</p>

(Baumgartner et al)

Criteria			
Clinical criteria	 Typical symptoms without other explanation. Elderly patient (>70 years). 		
Qualitative imaging data	• LV hypertrophy (additional history of hypertension to be considered).		
	 Reduced LV longitudinal function without other explanation. 		
Quantitative imaging data	• Mean gradient 30–40 mmHg.		
	• AVA ≤0.8 cm².		

2017 ESC/EAC TS Guidelines for the Management of Valvular Heart Disease (European Heart Journal 2017 - doi:10.1093/eurheartj/ehx391)

ESC

European Society of Cardiology

Criteria that increase the likelihood of ΕΔΟΤΣ severe AS in pts. with AVA < 1.0 cm², mean gradient < 40 mmHg and preserved EF^{of Cardiology}

(Baumgartner et al)

Criteria(continued)		
Quantitative imaging data (continued)	 Low flow (SVi <35 mL/m²) confirmed by techniques other than standard Doppler technique (LVOT measurement by 3D TOE or MSCT; CMR, invasive data) 	
	 Calcium score by MSCT: – Severe aortic stenosis very likely: men ≥3000; women ≥1600, 	
	 Severe aortic stenosis likely: men ≥2000; women ≥1200, 	
	 Severe aortic stenosis unlikely: men <1600; women<800. 	

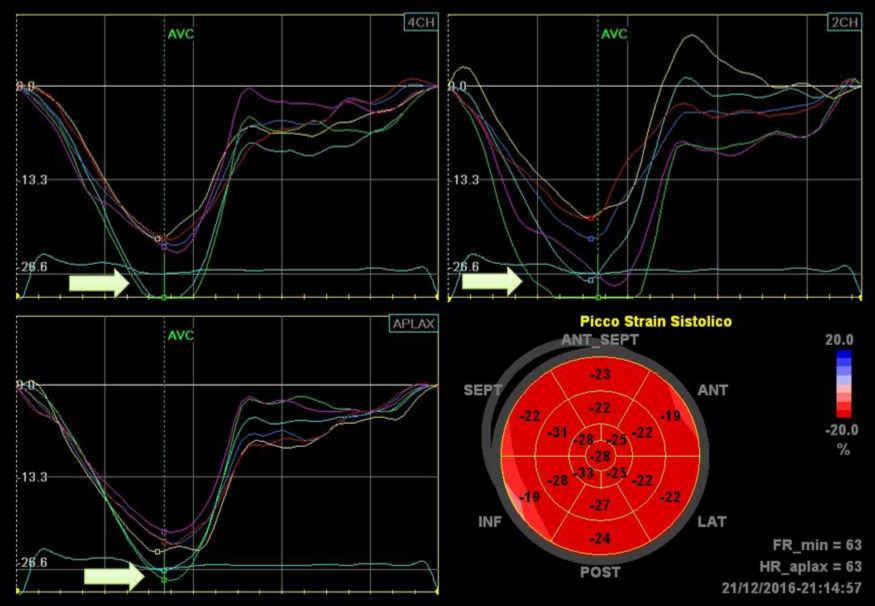
www.escardio.org/guidelines

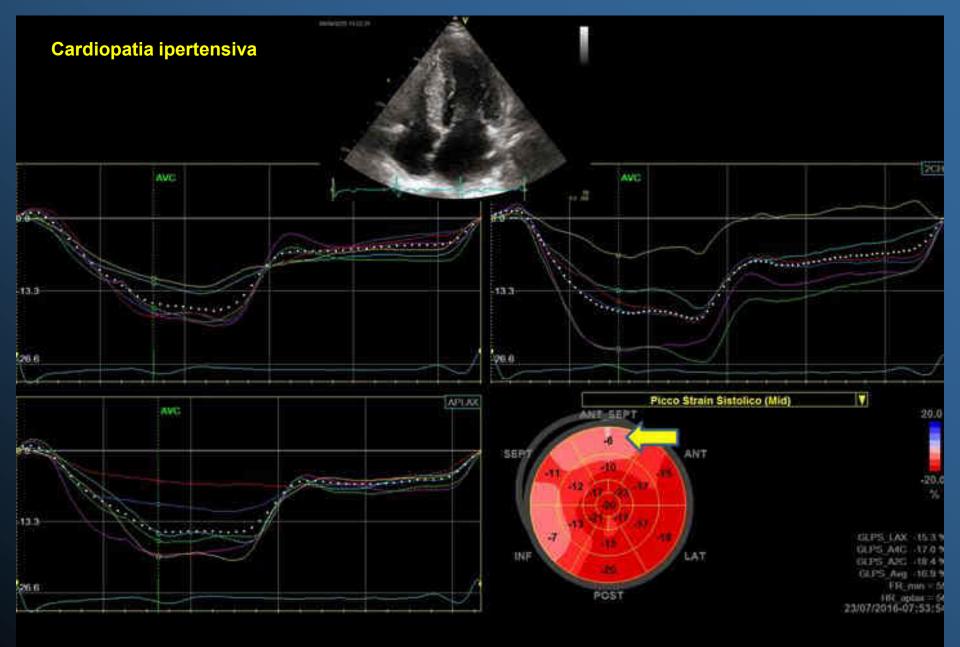
2017 ESC/EACTS Guidelines for the Management of Valvular Heart Disease (European Heart Journal 2017 - doi:10.1093/eurheartj/ehx391)

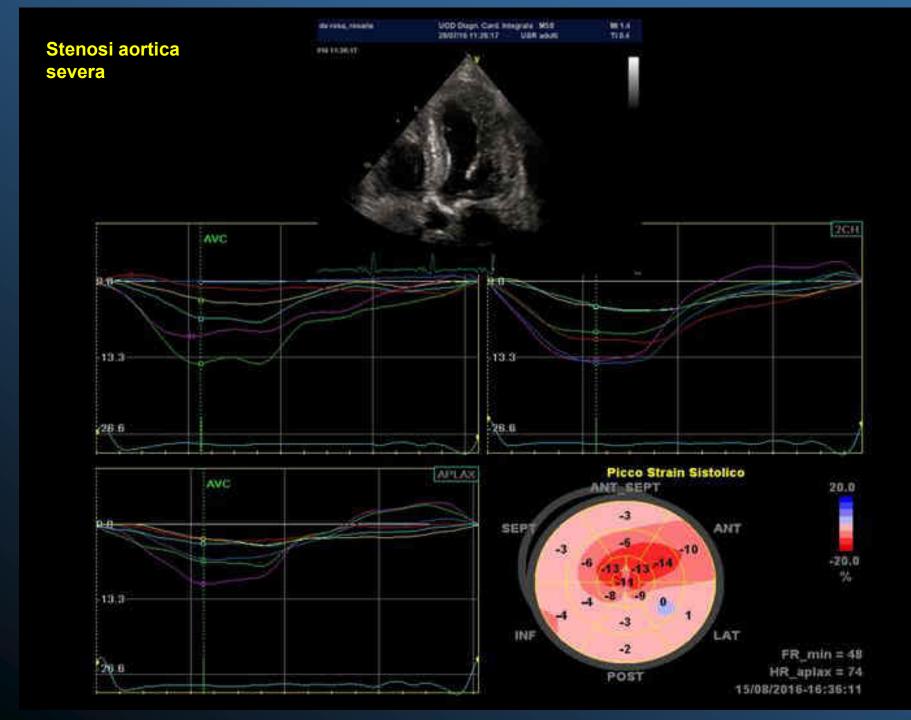
ESC

European Society

REVIEW

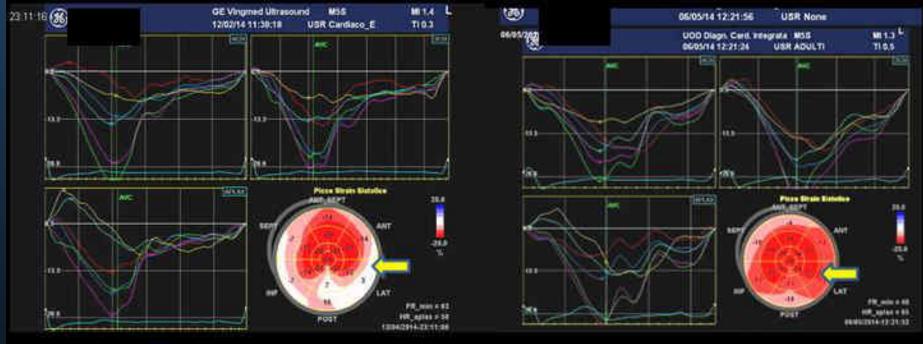

Left ventricular hypertrophy or storage disease? the incremental value of speckle tracking strain bull's eye


Antonello D'Andrea MD, PhD¹ || Juri Radmilovic MD¹ || Piercarlo Ballo MD² | Donato Mele MD³ || Eustachio Agricola MD⁴ || Matteo Cameli MD² || Andrea Rossi MD⁵ || Roberta Esposito MD⁶ || Giuseppina Novo MD⁷ || Sergio Mondillo MD² || Roberta Montisci MD⁸ || Sabina Gallina MD² || Eduardo Bossone MD¹⁰ || Maurizio Galderisi MD⁶ || On behalf of the Working Group on Echocardiography of the Italian Society of Cardiology

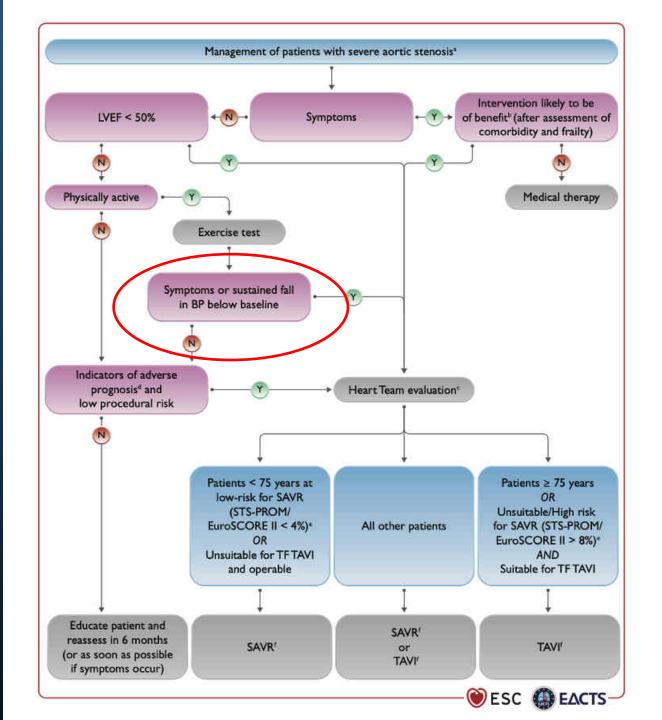

Type of left ventricular hypertrophy	Strain pattern	Mean GLS	Typical impairment on STE
Athlete's heart14	Normal GLS	-22.1±4.4%	None
Hypertrophic cardiomyopathy ²⁰	Reduced GLS	-15.7±3.6%	IV5
Arterial hypertension ²²	Reduced GLS—normal	-18.3±2.1%	IVS
Aortic stenosis ²⁹	Reduced GLS and GRS		Basal LV segments
Low flow-low gradient		-11.6±3.4%	
Normal flow-high gradient		-13.6±3.2%	
Normal flow-low gradient		-14.8±3.0%	
Aortic stenosis after TAVI ³¹	GLS improvement	-16.3±4.2%	Basal LV segments
Mitral regurgitation ²⁴			
Initial disease	Normal/ supranormal GLS	-23.2±2.1%	None
Advanced disease	Reduced GLS	-17.2±3.0%	Basal segments and lateral wall
Aortic regurgitation ³⁴	Reduced GLS	-17.5 ±3.1%	Diffused
Cardiac amyloidosis40	Reduced GLS	-9.1±4.0%	Apical sparing
Fabry disease ⁴²	Reduced GLS		Basal posterior-lateral
Normal sphericity index		-18.3±3.1%	1.
Elevated sphericity index		-17.2±3.0%	
Anabolic steroid abuse ⁴⁵	Reduced GLS	-12.1±2.0%	Diffused

GLS, global longitudinal strain; GRS, global radial strain; IVS, interventricular septum; LV, left ventricular; STE, speckle tracking echocardiography; TAVI, transcatheter aortic valve implantation.

Soggetto Sano



DOE 10.013/which.html


Effects of Transcatheter Aortic Valve Implantation on Left Ventricular and Left Atrial Morphology and Function

Artistelle, O'Arches, M.D., * J.L.C., * Retento Patielino, M.D., * Bosengela, Carotna, M.D., * Enan Di Nema, M.D., * Lucia, Begler, M.D., *Refaetle Scattella, M.D., * Gowerni Rossi, M.D., * Renatofilianshi, M.D., * Datatati Tartagkena, M.D.,* Masistra Cappeli Space, M.D., * Pack: Calation, M.D., * Ib date Carot, M.D., † Network: Resource, M.D.-F.A.C.C., † Mathede Calation, M.D., * and Mana Gowerna Ratio, M.D. *

AFTER TAVI

5.3 Medical therapy

No medical therapies influence the natural history of aortic stenosis. Statins (which demonstrated favourable effects in pre-clinical studies) do not affect disease progression²⁴⁶ and clinical trials targeting calcium metabolic pathways are ongoing. Patients with heart failure who are unsuitable (or waiting) for SAVR or TAVI should be medically treated according to ESC heart failure Guidelines.²⁴⁷ ACEI are safe in aortic stenosis (provided that BP is monitored carefully) and may have beneficial myocardial effects before the onset of symptoms, and after TAVI and SAVR.^{248–250} Coexisting hypertension should be treated to avoid additional afterload, although medication (particularly vasodilators) should be titrated to avoid symptomatic hypotension.

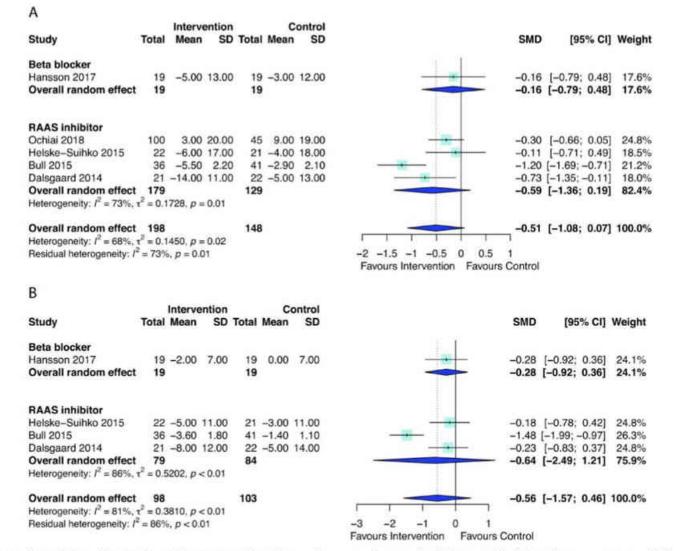


Figure 6 Forest plot of the effect of antihypertensive therapies on change in (A) systolic blood pressure and (B) diastolic blood pressure during follow-up. RAAS, renin-angiotensin and aldosterone systems; SMD, standardised mean difference.

SBP

DBP

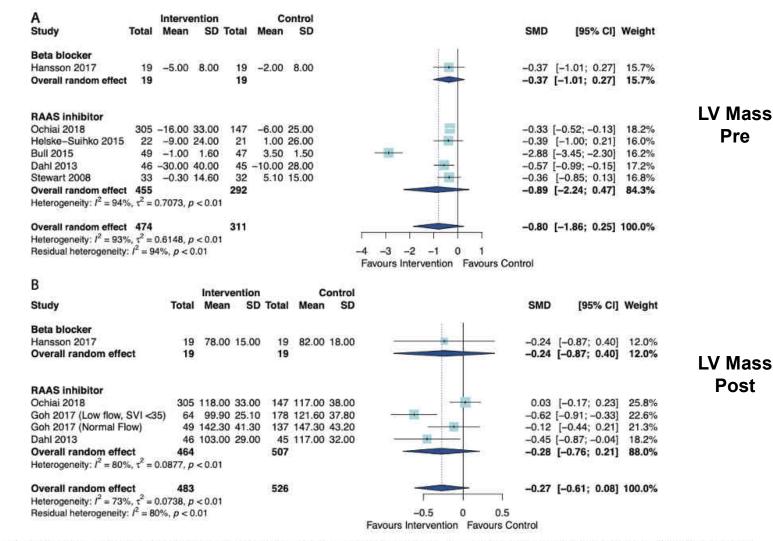


Figure 5 Forest plot of the effect of antihypertensive therapies on (A) change in Left Ventricular Mass Index (LVMI) and (B) post-LVMI. RAAS, renin–angiotensin and aldosterone systems; SMD, standardised mean difference.

Open access

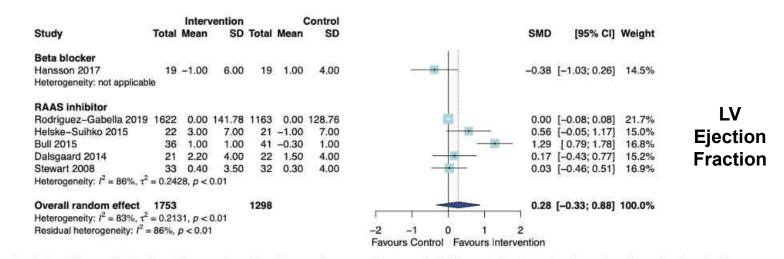
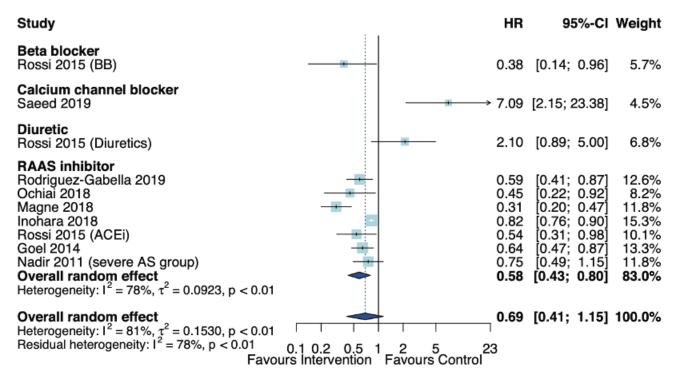


Figure 7 Forest plot of the effect of antihypertensive therapies on change in left ventricular ejection fraction during follow-up. RAAS, renin–angiotensin and aldosterone systems; SMD, standardised mean difference.


 Table 4
 Pooled risk ratios for postaortic valve replacement complications, haemodynamic and echocardiographic parameter changes with antihypertensive therapies at follow-up

Postoperative complications	No of studies	Risk ratio	95% CI	P value	12 (%)
Postoperative atrial fibrillation	6	0.98	0.64 to 1.50	0.92	81.2
Postoperative stroke or transient ischaemic attack	4	0.45	0.06 to 3.69	0.31	86.9
Acute kidney injury	3	0.8	0.35 to 1.84	0.47	53
Permanent pacemaker	5	0.99	0.62 to 1.58	0.92	70
Readmission	5	0.79	0.40 to 1.60	0.43	82
Haemodynamic and echocardiographic parameters	No of studies	SMD	95% CI	P value	l ² (%)
Post-mean arterial pressure	3	-0.62	-2.85 to 1.60	0.35	79
Change in heart rate	3	-0.41	-1.71 to 0.88	0.3	61
Post-heart rate	3	-0.68	-2.60 to 1.23	0.26	80
Change in aortic valve area	3	0.09	-0.36 to 0.54	0.48	37
Post-aortic valve area	3	0.01	-0.14 to 0.16	0.89	0
Post-mean pressure gradient	3	-0.16	-0.55 to 0.23	0.28	25
Post-deceleration time	3	0.03	-0.23 to 0.30	0.71	0
Post-E/A ratio	3	-0.06	-0.43 to 0.32	0.67	23
Post-E/e' ratio	4	0.16	-0.56 to 0.87	0.54	65

Other haemodynamic and echocardiographic changes. SMD, standardised mean difference.;

BMJ Open Antihypertensive therapies in moderate or severe aortic stenosis: a systematic review and meta-analysis

Jonathan Sen,^{1,2} Erin Chung,³ Christopher Neil,^{1,2} Thomas Marwick ^[]

Figure 4 Forest plot of the effect of antihypertensive therapies on HR of all-cause mortality at follow-up. ACEi, ACE inhibitor; AS, aortic stenosis; RAAS, renin-angiotensin and aldosterone systems.

Management of patients with combined arterial hypertension and aortic valve stenosis: a consensus document from the Council on Hypertension and Council on Valvular Heart **Disease of the European Society of Cardiology**, the European Association of Cardiovascular Imaging (EACVI), and the European Association of Percutaneous Cardiovascular **Interventions (EAPCI)**

Costantino Mancusi (1,2, Giovanni de Simone^{1,2}*, Jana Brguljan Hitij³, Isabella Sudano⁴, Felix Mahfoud⁵, Gianfranco Parati (1,6, Thomas Kahan⁷, Emanuele Barbato^{1,2}, Luc A. Pierard⁸, Madalina Garbi⁹, Frank A. Flachskampf¹⁰, and Eva Gerdts^{11,12}

Box 5 Expert panel consensus

- Antihypertensive drug treatment should be initiated in patients with aortic stenosis (AS) at a blood pressure (BP) ≥140/90 mmHg (≥160/90 mmHg in patients >80 years).
- A target BP of 130–139/80–90 mmHg is advisable in most patients, if well tolerated.
- A BP target <120/70 mmHg should be avoided.
- Angiotensin-converting enzyme inhibitors or angiotensin receptor blockers should be considered as first line therapy for antihypertensive treatment.
- β-Blockers may be considered in hypertensive patients with AS and concomitant compelling indications such as coronary artery disease or arrhythmias.

Box 6 Expert panel consensus

- Blood pressure (BP) should be optimally controlled before aortic valve replacement (AVR), irrespective of the chosen procedure (surgical or transcatheter valve replacement).
- BP should be carefully managed in the early post-operative phase, because the increase in systolic BP after AVR may induce pulmonary oedema and acute heart failure.
- Arterial hypertension in stabilized patients after AVR should be managed according to guidelines to reduce morbidity and mortality.

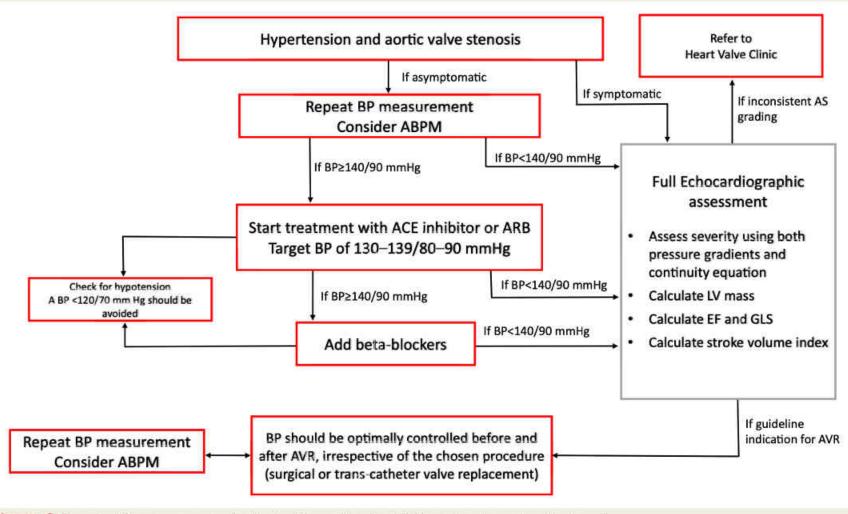


Figure 2 Flowchart for management of patients with combined arterial hypertension and aortic stenosis.

COCIS 2017: sports classified into five groups

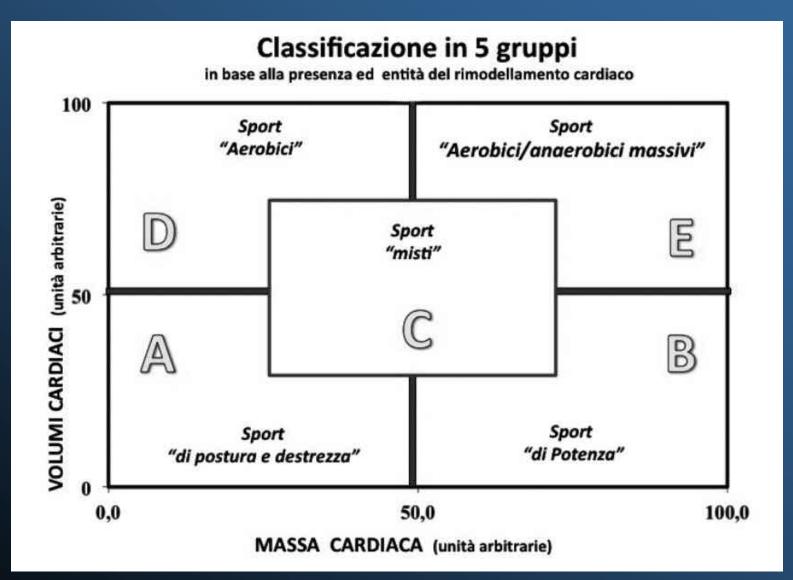


 Tabella 1 - Classificazione delle attività fisiche e sportive (parte I)

ATTIVITÀ DINAMICHE AD IMPEGNO CARDIOVASCOLARE COSTANTE

Intensità*						
	Lieve	Moderata	Elevata			
Attività Fisiche	Camminare 3-4 km/h	6 km/h	>6 km/h			
	Pedalare <12 km/h	12-15 km/h	>15 km/h			
	Nuoto lento	Nuoto moderato	Nuoto veloce			
		Jogging < 8 km/h	> 10 km/h			
		Pattinaggio (passeggiata)	Pattinaggio			
Attività Sportive		Trekking	Canottaggio			
			Mountain bike			
		Sci di fondo (escurs.)	Sci di fondo			
		Canoa (a. tranquilla)	Canoa			
			Triathlon			
			Danza Sportiva			
Attività di Palestra		Aerobica (bassa intensità)	Aerobica (alto impatto)			
		Step	Power Step			
		Total Body CV Cross training (comb. aerobica, step, slide, ecc.)	Total Body CV Cross training (comb. aerobica, step, slide, ecc.)			
	Indoor bike (endurance o per principianti)	Indoor bike (fitness)	Indoor bike (performance)			
	Acquagym	Acquafitness	Acquafitness intenso			
		Fitboxe	Aeroboxe			
	Rebounding (scioltezza)	Rebounding fitness	Rebounding prestazione			

Endurance dynamic aerobic physical activities with costant cardiovascular performance

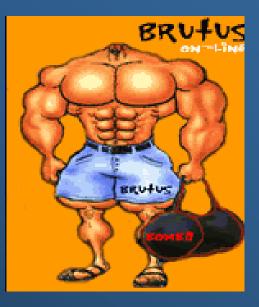
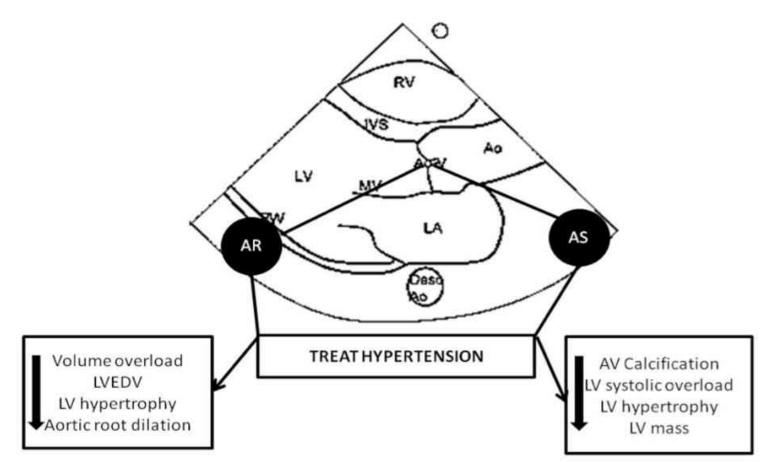


Tabella 1 - Classificazione delle attività fisiche e sportive (parte II)

ATTIVITÀ DINAMICHE AD IMPEGNO CARDIOVASCOLARE INTERMITTENTE

Intensità*							
	Lieve	Moderata	Elevata				
Attività Sportive	Tennis (doppio)	Tennis (palleggio)	Tennis (partita)				
	Golf	Calcio a 5 (ludico)	Calcio a 5 (partita)				
	Bocce	Pallavolo e beachvolley	Beachvolley (2 vs 2)				
	Caccia e pesca sportiva	Pallacanestro (ludico)	Pallacanestro (partita)				
		Tennistavolo (ludico)	Tennistavolo (partita)				
		Squash/raquetball (ludico)	Squash/raquetball (partita)				
Attività di Palestra	Danza / Hip hop	Aerobic Circuit Training per il fitness	Aerobic Circuit Training per la prestazione				
	Interval Training (per principianti)	Interval Training per il fitness	Interval Training per la prestazione				
	ATTIVITÀ STATIC	CHE O DI POTENZ	A				
		Scherma	Sollevamento pesi				
Attività Sportive		Equitazione	Body building				
		Windsurf	Sci alpino				
			Sci nautico				
			Arrampicata sportiva				
Attività di Palestra	Corpo libero	Pump/Bodypump/ Push	Body building				
	Stretching	Acquafitness con galleggianti	Acquafitness con galleggianti in acqua profonda				
	Body sculpture	Acquafitness con attrezzi di attrito	Acquafitness con attrezzi di attrito in acqua profonda				
	Pilates/Yoga	Yoga per il fitness	Power Yoga				
	Tai chi chuan						
	Qi Gong						

Power static anaerobic physical activities with intermittent cardiovascular performance



REVIEW ARTICLE

Arterial hypertension and aortic valve stenosis: Shedding light on a common "liaison"

Charalampos I. Liakos, MD, PhD^{a,*}, Charalampos A. Grassos, MD, PhD^b, Dimitrios P. Papadopoulos, MD, PhD^c, Kyriakos S. Dimitriadis, MD, PhD^a, Constantinos P. Tsioufis, MD, PhD^a, Dimitrios Tousoulis, MD, PhD^a

